Copertina
Autore Giuliano Preparata
Titolo Dai quark ai cristalli
SottotitoloBreve storia di un lungo viaggi dentro la materia
EdizioneBollati Boringhieri, Torino, 2002, Saggi Scienze , pag. 256, dim. 146x220x16 , Isbn 978-88-339-1392-6
PrefazioneG. Boaretto, E. Del Giudice, G. Galli, C. Medail
LettorePiergiorgio Siena, 2003
Classe fisica
PrimaPagina


al sito dell'editore


per l'acquisto su IBS.IT

per l'acquisto su BOL.IT

per l'acquisto su AMAZON.IT

 

| << |  <  |  >  | >> |

Indice

VII Prefazione
    di C. Boaretto, E. Del Giudice,
    G. Galli e C. Medail

    Dai quark ai cristalli

  3  0.  Perché questo libro?
  5  1.  Farò il fisico
 10  2.  Lo spin dei bosoni
 23  3.  Quark ad Arcetri
 43  4.  Princeton e dintorni
 64  5.  Il cono di luce
 81  6.  Ma che cosa sono i quark?
 95  7.  You are old, Father Feynman
110  8.  Il vuoto è tutto
128  9.  Ricostruire la materia
138 10.  Sorella acqua
150 11.  Il sole in provetta
168 12.  Materia super
180 13.  Magie della coerenza
196 14.  Ritorno ai princìpi
209 15.  Un ponte verso la biologia

217 Elenco delle abbreviazioni
221 Appendice Bibliografia degli
    scritti di Giuliano Preparata
245 Indice dei nomi

 

 

| << |  <  |  >  | >> |

Pagina 40

Box 3.3 La teoria quantistica dei campi (TQC)


La teoria quantistica dei campi (TQC), cardine concettuale del viaggio descritto in questo libro, è la versione della teoria classica dei campi che incorpora la discontinuità quantistica, scoperta da Max Planck alla fine dell’Ottocento proprio nell’ambito della teoria di campo classica per eccellenza, la teoria elettrodinamica che Maxwell aveva completato con le sue celebri equazioni proposte nel 1873. L’impianto concettuale della teoria quantistica dei campi non è difficile da descrivere, anche se i suoi sviluppi sono quanto di più arduo e ostico esista nella fisica teorica odierna. Si parte dunque dalla teoria dei campi classica che consiste in un certo insieme di campi, ovvero grandezze fisiche che sono definite in una certa zona spaziotemporale (un dominio spaziale per un certo intervallo di tempo): sono campi la temperatura e la pressione di una stanza in un certo giorno, come pure i campi elettrico e magnetico che si stabiliscono nella zona di spazio che va dall’antenna di RAI all’antenna del mio televisore, le cui oscillazioni si traducono nelle immagini del telegiornale.

L’evoluzione dei campi Ck(x,t) (dove k è un indice che li denota e li differenzia), funzioni dello spazio x e del tempo t, è governata da certe equazioni differenziali, le equazioni di campo, che esprimono relazioni precise fra le loro variazioni fra due punti vicini e fra istanti temporali successivi, controllandone così la «propagazione». Le soluzioni di tali equazioni dipendono quindi da opportune «condizioni iniziali», che descrivono le configurazioni dei campi in una zona spaziale prefissata, a un istante prefissato, così come il moto di un grave dipende dalla posizione e dalla velocità in cui esso si trova all’istante iniziale.

Rimandando al box 4.2 per una descrizione più dettagliata del procedimento di «quantizzazione» di un campo quantistico, si vuole qui sottolineare soltanto l’aspetto più importante che differenzia la teoria quantistica dei campi da quella classica. La discontinuità quantistica, che trova la sua espressione matematica nel famoso «principio di Heisenberg», o di «indeterminazione», così come ha espulso dalla descrizione della realtà fisica la nozione di «traiettoria» di una particella, sostituendola con quella di «stato», in cui le osservabili posizione e velocità sono indeterminate secondo le richieste del principio, allo stesso modo lascia la configurazione di un campo classico indeterminata, rendendo così impossibile l’imposizione di «condizioni iniziali» nette alle soluzioni delle equazioni di campo.

La conseguenza di questa importante differenza è che un sistema di campi quantistici, in qualunque stato si trovi inizialmente, raggìungerà sempre, dopo un tempo opportuno, lo stato di minima energia (in inglese, Ground State), giacché le fluttuazioni quantistiche, conseguenza dell’indeterminazione quantistica, faranno sempre in modo di allontanare il sistema quantistico da configurazioni di energia non minima, e quindi instabili, verso la configurazione di minima energia, e quindi stabile: il «Ground State» (GS).

Può sembrare paradossale (ma in senso filosofico non lo è affatto) che la fisica indeterministica emersa dalla rivoluzione quantistica dell’inizio del Novecento si riveli nei fatti molto più «determinata» della deterministica fisica classica, che i recenti sviluppi matematici mostrano dominata dal «caos».

| << |  <  |  >  | >> |

Pagina 126

[...] Vengo, infine, invitato nel settembre 1987 a una conferenza sui metodi variazionali nella teoria quantistica dei campi, che si tiene su un’isoletta del Mare dei Nord, poco distante da Brema, Wangeroog. Nel salire a bordo dell’aeroplanino che collega Brema Wangeroog, rivedo Feynman, che dallo scontro del 1976 avevo rivisto una sola volta, di sfuggita, a una conterenza a Lisbona nel 1983. L’incontro è cordiale, mi appare molto provato; da dieci anni convive con un tumore all’intestino. Sono uno dei primi speaker, l’argomento è il calcolo variazionale del vuoto della QCD. Feynman ha speso gli ultimi dieci anni esattamente sullo stesso problema, pubblicando però pochissimo: evidentemente anche per un grande teorico come lui il problema è terribilmente difficile. Non ho neppure finito di descrivere il risultato che intendo dimostrare che dal fondo della sala si alza la sua voce tonante: «Wrong, completely wrong!» Di fronte allo stupore mio e degli astanti, si precipita alla lavagna e parla e scrive formule in modo frenetico per mezz’ora, esattamente il tempo che avevo a disposizione. Io, che a dire il vero non ho capito bene la sua critica, prendo le mie carte costernato e torno al mio posto con la morte nel cuore senza dire una parola. Non sono in grado di reagire come avevo fatto dieci anni prima a Kaysersberg, perché il lungo girovagare concettuale di Feynman mi ha lasciato soltanto un senso di vertigine. Sono disperato, cerco e trovo aiuto nella mia compagna, Emilia.

Dopo una notte insonne, trascorsa a passare in rassegna i punti salienti dello show del pomeriggio precedente, incontro Feynmann a colazione; ha gli occhi spiritati, mi fa cenno di fare colazione con lui. Mi seggo, e la prima cosa che mi dice è che niente di quello che aveva detto il giorno prima sta in piedi: non vede nulla di sbagliato in quello che ho fatto, anzi si congratula con me per aver trovato con la forza bruta un risultato (quello della cancellazione dell’energia del campo classico) che col senno di poi egli può derivare altrimenti e semplicemente. Non posso credere alle mie orecchie, di punto in bianco risalgo dagli abissi della disperazione a rivedere le luci di un mondo della ragione dove le verità, anche se penetrate con difficoltà e confusamente, restano saldi punti di riferimento. Feynman è turbato dalle mie conclusioni, che ribaltano e rimettono in discussione la sua impostazione del problema, pensa, spera che ci sia ancora spazio per evitare il crollo del suo sforzo decennale. Ingaggia con me un «braccio di ferro» intellettuale, passando in rassegna con sistematica minuzia i punti salienti del mio calcolo, ponendomi ben più di una domanda, a cui riesco a dare risposta solo dopo avervi riflettuto per qualche ora. Alla fine della conferenza, durata una settimana, prima di separarci Feynman ammette la solidità del mio risultato, di cui avrebbe tuttavia voluto controllare altri aspetti, e ci diamo appuntamento di lì a qualche mese. Era il 10 settembre 1987, Richard Feynman muore agli inizi di febbraio 1988. Con lui si spegne anche la mia speranza di avere dalla mia parte un grande, vero scienziato.

| << |  <  |  >  | >> |

Pagina 150

Il sole in provetta


«Ci sono due americani che hanno fatto la fusione, guarda i giornali», è la telefonata che mi giunge da Roma, da mio padre, il 24 marzo 1989. Negli ultimi tempi gli avevo parlato spesso delle mie ricerche e, in particolare, del mio desiderio di applicare alla fisica dei plasmi le idee che avevo recentemente sviluppato. Mi interessava vedere se con la nuova impostazione non fosse per caso possibile superare gli ostacoli che da più di trent’anni impediscono l’uso pacifico dell’energia termonucleare, quella, per intenderci, che si scatena nell’esplosione della bomba H. L’annuncio degli elettrochimici dell’Università dello Utah, Martin Fleischmann e Stanlev Pons, il 23 marzo 1989, della scoperta della cosiddetta «fusione fredda», apparso sulle prime pagine di tutti i giornali del mondo, richiama alla mente di mio padre le nostre conversazioni, ed egli mi avverte immediatamente.

Non sono un lettore molto assiduo di quotidiani, e la cosa mi era sfuggita. Mi precipito quindi in edicola a comprare i giornali di più larga tiratura. Riproducono tutti, in prima pagina, il volto sorridente dei due scienziati con in mano una provetta, la tipica cella elettrolitica di Fleischmann-Pons. Non ho bisogno di leggere una riga degli articoli a cinque colonne che riportano i dettagli della conferenza-stampa, la cosa mi sembra così enorme che rimango completamente incredulo: mi attendevo foto di Tokamak, dichiarazioni trionfali di direttori dei grandi laboratori, dove da decenni si persegue la fusione termonucleare, la cosiddetta «fusione calda», e invece no, si pretende di farmi credere che quello che nel sole avviene a temperature di milioni di gradi e a pressioni enormi, possa qui, sulla terra, avvenire in una provetta, con i mezzi dell’elettrochimica. Il mio atteggiamento, le mie reazioni sono esattamente quelle della maggior parte dei miei colleghi: per fortuna, mi dico, non sono un leader, altrimenti dovrei dare il mio parere su una «bufala» e non saprei come farlo, dovrei cercare almeno di capire quello che questi signori hanno fatto, perdere il mio tempo dietro le loro stranezze. E a giudicare dalle dichiarazioni imbarazzate di Amaldi, Rubbia, Cabibbo e Zichichi, ho ragione di rallegrarmi della mia anonimità. Liquido il tutto come un altro degli abbagli in cui incorrono periodicamente gli uomini di scienza (d’altra parte negli anni cinquanta non apparve sui giornali qualcosa di simile per quanto riguarda la macchina inglese per la fusione calda?, se ricordo bene si chiamava Stellarator), e mi riprometto di non occuparmi più di queste cose.

Circa una settimana dopo, durante una seduta di Facoltà incontro il collega Sergio Trasatti, elettrochimico di livello internazionale. Ricordandomi che il suo campo, l’elettrochimica, è quello dei due della fusione fredda, getto là una battuta: «Evidentemente due tuoi colleghi americani debbono soffrire di allucinazioni». Sono enormemente sorpreso della sua risposta: «Se fossi in te gli darei più credito, Fleischmann è uno dei maggiori elettrochimici del mondo, oltre che fellow della Royal Society». Non posso più far finta di nulla; liquidare come non-senso un annuncio di scienziati di quel livello sarebbe comportarsi come gli oppositori di Benveniste, che non hanno tenuto in minimo conto la sua natura scientifica, conquistata con anni di duro e serio lavoro. Nella mia visione del mondo, infatti, non c’è la comoda «casella della follia» nella quale sistemare tutti coloro di cui ben conosciamo il valore, ma le cui conquiste ci dispiacciono per nobili o meno nobili motivi. Se scienziati di prestigio hanno deciso di venire allo scoperto con un annuncio di tale devastante portata, mi dico, qualcosa degno di attenzione ci deve sicuramente essere, e sarebbe un errore non cercare di andare fino in fondo.

| << |  <  |